Introducción
Los incendios pueden destruir fabricas completas y con ellas, fuentes de trabajo en perjuicio del trabajador y de la economía del país.
Para evitarlos se requiere que los trabajadores observen las normas de seguridad que los previenen en el caso de que exista el fuego.
Por eso se hace indispensable, capacitar al personal, para seleccionar y usar los equipos de combate de incendios.
Objetivo GeneralConocer cuales son los tres elementos que pueden provocar un incendio, y también conocer su comportamiento.
Objetivo EspecificoEste trabajo tiene como finalidad el cómo llevar a cabo la utilización del equipo para poder combatir cualquier tipo de incendio.
JustificaciónEste trabajo contiene información acerca de los elementos que pueden provocar un incendio, estos son: El calor, Combustibles, Oxigeno. Los cuales son una Reacción Química.
Esto quiere decir que, estos elementos están latentes en cualquier momento, si no se tiene la debida precaución pueden provocar un incendio, tanto en el hogar, como en el trabajo, pudiendo afectar tanto a las personas como a materiales y equipos de trabajo.También es importante señalar, que en este trabajo recepcional, encontraremos como eliminar estos tres elementos que son fuentes de calor.La realización de este trabajo es con el fin de presentar mi examen profesional y así poder obtener mi titulo profesional, el cual me facilitara entrar al área laboral.
CAPITULO I: Definición de elementos que participan para que exista fuego.
1. 1. Que es el fuego
El fuego según indica un viejo adagio, es un buen servidor pero un mal amo, la prudencia que contienen estas palabras demuestran demasiado, frecuentemente en los informes de los incendios que se traducen en perdidas de vidas o en daños a las propiedades. El fuego, el mal amo, es un riesgo constante en el trabajo, como en el hogar, y en nuestras actividades de ocio.
El fuego es consecuencia del calor y la luz que se producen durante las reacciones químicas, denominadas estas de combustión. En la mayoría de los fuegos, la reacción de combustión se basa en el oxigeno del aire, al reaccionar este con un material inflamable, tal como la madera, la ropa, el papel, el petróleo, o los solventes, los cuales entran en la clasificación química general de compuestos orgánicos; Por ejemplo los compuestos de carbono.
Una reacción de combustión muy simple es la que ocurre entre el gas metano, CH4, y el oxigeno, para dar bióxido de carbono, CO2 y agua.
Lo anterior es una reacción completa y muestra que una molécula (unidad) de metano, requiere de dos moléculas (unidades) de oxigeno para dar una combustión completa, si la reacción se realiza sin el oxigeno suficiente, se dice que es incompleta. La combustión incompleta de compuestos orgánicos producirá monóxido de carbono y partículas de carbono, las que con pequeños fragmentos de material no quemado, causan humo. La formación de bióxido de carbono en la atmósfera hará más difícil la respiración.
La mayoría de las personas que mueren en incendios, mueren a consecuencia del efecto toxico del humo y de los gases calientes, y no como consecuencia directa de las quemaduras.
La combustión de la gasolina en el motor de un automóvil constituye un buen ejemplo de una reacción de combustión incompleta, el monóxido de carbono, el bióxido de carbono, el agua y el humo, todos son emitidos por el tubo de escape, depositándose una buena cantidad de carbono u hollín. Para lograr que la mezcla de aire y gasolina se "enciendan" se debe contar con una bujía eficaz como fuente de ignición.
La combinación de combustible, oxigeno y calor, suministran los tres componentes de la reacción de combustión que puede dar origen al fuego.
1. 2. Triangulo del Fuego
Los tres elementos del fuego pueden representarse mediante el triángulo que se muestran a continuación.
Si el triangulo esta incompleto no podrá producirse "fuego". La base sobre lo que se apoya la prevención del fuego y la lucha contra el mismo consiste en romper el triangulo del fuego.
En general la reacción de combustión, reside en el oxigeno del aire para que este apoye la combustión, pero esta no es la única fuente de oxígeno, en su estructura para quemarse sin que el aire ayude, solamente requiere calor. Como ejemplos bien conocidos de tales materiales están, el celuloide, los explosivos denominados nitroglicerina y nitrocelulosa, la cordita y el nitrato de amoniaco. Los combustibles o materiales inflamables no reaccionan siempre con el oxigeno, para incendiarse; el cloro constituye un ejemplo de otro gas que puede contribuir a la combustión, a semejanza del oxigeno, puede reaccionar con el hidrógeno, y los compuestos orgánicos, por ejemplo la trementina.
Los accidentes con frecuencia los ocasiona lo inesperado, y el nitrógeno, como riesgo de incendio, puede sonar extraño, pero el caso es que puede arder con materiales reactivos y sus aleaciones, por ejemplo el magnesio.
La posibilidad de que un material se queme depende de sus propiedades física, a la vez que de sus propiedades químicas, por regla general los materiales son inflamables solamente en estado de vapor, son pocos los sólidos o los líquidos que arden directamente. La formación de vapor procedente de sólidos o líquidos se controlan fácilmente mediante su temperatura. En la prevención de fuegos, el conocimiento de la capacidad de un material para formar vapores y de la temperatura requerida para que dichos vapores se inflamen, es muy importante, sin calor o sin una fuente de ignición, el material inflamable puede utilizarse normalmente con plena seguridad en cuestión de su riesgo de incendio.
Una observación de la facilidad con que el vapor arde brinda también un sistema para reducir el peligro de fuego correspondiente a las distintas sustancias.
1.2.1 Combustible
Este puede ser cualquier material combustible, ya sea sólido, liquido o gas. La mayoría de los sólidos y líquidos se convierten en vapores o gases antes de entrar en combustión.
1. 2. 2. Oxigeno
El aire que respiramos esta compuesto de 21% de oxigeno. El fuego requiere una atmósfera de por lo menos 16% de oxigeno.El oxigeno es un carburante, es decir activa la combustión.
1. 2. 3. El Calor
Es la energía requerida para elevar la temperatura del combustible hasta el punto en que se despiden suficientes vapores que permiten que ocurra la ignición.
1. 2. 4. Reacción Química
Una reacción en cadena puede ocurrir cuando los otros tres elementos están presentes en las condiciones y proporciones apropiadas. El fuego ocurre cuando se lleva a cabo esta rápida oxidación o incendio.
Se le considera como incendio a todo tipo de fuego no controlado cause o no daños directos.
CAPITULO IIClasificación de los Fuegos
2. 1. Tipos de Fuegos
2. 1. 1 Clase "A"
Son los fuegos que involucran a los materiales orgánicos sólidos, en los que pueden formarse, brasas, por ejemplo, la madera, el papel, la goma, los plásticos y los tejidos.
2. 1. 2. Clase "B"
Son los fuegos que involucran a líquidos y sólidos fácilmente fundibles, por ejemplo, el etano, metano, la gasolina, parafina y la cera de parafina.
2. 1. 3. Clase "C"
Son los fuegos que involucran a los equipos eléctricos energizados, tales como los electrodomésticos, los interruptores, cajas de fusibles y las herramientas eléctricas.
2. 1. 4. Clase "D"
Involucran a ciertos metales combustibles, tales como el magnesio, el titanio, el potasio y el sodio. Estos metales arden a altas temperaturas y exhalan suficiente oxigeno como para mantener la combustión, pueden reaccionar violentamente con el agua u otros químicos, y deben ser manejados con cautela.
CAPITULO III Fuentes de Calor y como evitar que comience el Fuego
3. 1. El Calor
La energía necesaria para que el combustible vaporice y el fuego se inicie y mantenga se denomina "Calor".
El calor necesario para iniciar un Fuego, generalmente viene de una fuente externa que vaporiza el material combustible y sube la temperatura de los gases hasta su punto de inflamación. Después, el mismo calor que desprende el combustible que va ardiendo, vasta para vaporizar e inflamar mas combustible.
Existen diversas fuentes de calor y varían desde las muy evidentes hasta las insospechadas.
3. 2. Fuentes de Calor
3.2.1. Flamas Abiertas
Las flamas abiertas, como por ejemplo, los sopletes deben cuidarse de que no se encuentren cerca de productos flamables, como algún deposito de cualquier combustible.
Parecería que el peligro de los fuegos abiertos y chispas junto a materiales combustibles es tan evidente, que cualquier persona de criterio actuaría en consecuencia; pero la verdad, es que los casos de incendio demuestran lo contrario. Salvo en ciertas ocasiones verdaderamente imprevisibles, los incendios debido a estas situaciones son completamente abatibles. Los equipos para corte y soldadura que se utilizan sin la debida precaución, son causa grave, que por ellos se desprende una numerosa capa de chispas, por lo que en las áreas donde se emplean estos equipos no deberán manejar materiales de fácil combustión, se deberán usar pantallas de material incombustible a base de asbesto y deberá mantenerse una rigurosa limpieza en el área de trabajo, evitando derrames de aceites y otros productos de fácil combustión.
3. 2. 2. Cigarros, Cerillos y el Fumar
Para evitar que sean un peligro se deben definir perfectamente los lugares donde se pueda fumar, ya que los cigarros y cerillos, causan gran porcentaje de incendios.
Año tras año, una cuarta parte de incendios se originan por el descuidado modo de emplear los cerillos y la negligencia en apagar el cigarro o las cenizas de la pipa.
los pasos que debe dar el ingeniero o técnico en seguridad industrial, para que ya no exista ese problema son:
-Buscar cuales son los lugares más propensos a que exista fuego.
-Poner letreros que digan prohibido fumar, en cada lugar más propenso al fuego.
-Poner avisos donde se haya fijado, y se obligue a los trabajadores en general a aceptar las disposiciones, las cuales serán observadas al pie de la letra, tanto por supervisores y ejecutivos, como también por el gerente de la fabrica y visitantes.
-También que se lleven encima cerillos o encendedores de cigarro en las zonas ya consideradas de no fumar.
3. 2. 3. Instalaciones Eléctricas y Aparatos Eléctricos
Hay dos tipos de instalaciones eléctricas: provisionales y fijas
Instalaciones Eléctricas Provisionales:
Son aquellas que han envejecido y el material aislante que las cubre esta deteriorado, puede causar incendios por corto circuito o por subir la carga de energía eléctrica en las líneas de distribución, incendiando la estructura sobre la que están instalados los conductores, mas aun si la estructura es de madera o de algún material similar.
Instalaciones Fijas:
Son los conductores que deben de ir entubados y la calidad de los materiales deberán cumplir con la norma oficial correspondiente, principalmente en aquellos lugares donde se manejen líquidos y gases inflamables, en cuyo caso las tomas de corriente y registro deberán ser a prueba de explosión.
Los equipos eléctricos defectuosos son también causa frecuente de incendio por corto circuito en lo mismo y transmisión de fuego a materiales combustibles en su proximidad, tanto en equipos eléctricos como sus cables de alimentación deberán estar en perfectas condiciones.
3. 2. 4. Tipos de Chispas
Existen dos tipos de chispas diferentes: Eléctricas y Chispas Mecánicas
Chispas Eléctricas
Son las que se producen al desconectar un interruptor, al enchufar o al desconectar una clavija, al encender o apagar la luz, son peligrosos si se manejan materiales inflamables, ya que existe el riesgo de explosión. Para evitar esto las líneas, las conexiones y los interruptores deben ser herméticos para que las chispas que puedan producirse no entren en contacto.
Chispas Mecánicas
Son las que se producen por rozamiento. Un cojinete sin lubricación que se desliza puede producir un incendio por lo que deben corregirse estas anomalías, también pueden ser producidas por golpes, como con cinceles, excesivo rozamiento al rebajar algo con el esmeril.
Debe prevenirse que estas chispas caigan cerca de materiales combustibles, o que el ambiente donde se trabaje este cargado.
miércoles, 2 de diciembre de 2009
Las Clases de Fuego
Introducción
Los incendios pueden destruir fabricas completas y con ellas, fuentes de trabajo en perjuicio del trabajador y de la economía del país.
Para evitarlos se requiere que los trabajadores observen las normas de seguridad que los previenen en el caso de que exista el fuego.
Por eso se hace indispensable, capacitar al personal, para seleccionar y usar los equipos de combate de incendios.
Objetivo GeneralConocer cuales son los tres elementos que pueden provocar un incendio, y también conocer su comportamiento.
Objetivo EspecificoEste trabajo tiene como finalidad el cómo llevar a cabo la utilización del equipo para poder combatir cualquier tipo de incendio.
JustificaciónEste trabajo contiene información acerca de los elementos que pueden provocar un incendio, estos son: El calor, Combustibles, Oxigeno. Los cuales son una Reacción Química.
Esto quiere decir que, estos elementos están latentes en cualquier momento, si no se tiene la debida precaución pueden provocar un incendio, tanto en el hogar, como en el trabajo, pudiendo afectar tanto a las personas como a materiales y equipos de trabajo.También es importante señalar, que en este trabajo recepcional, encontraremos como eliminar estos tres elementos que son fuentes de calor.La realización de este trabajo es con el fin de presentar mi examen profesional y así poder obtener mi titulo profesional, el cual me facilitara entrar al área laboral.
CAPITULO I: Definición de elementos que participan para que exista fuego.
1. 1. Que es el fuego
El fuego según indica un viejo adagio, es un buen servidor pero un mal amo, la prudencia que contienen estas palabras demuestran demasiado, frecuentemente en los informes de los incendios que se traducen en perdidas de vidas o en daños a las propiedades. El fuego, el mal amo, es un riesgo constante en el trabajo, como en el hogar, y en nuestras actividades de ocio.
El fuego es consecuencia del calor y la luz que se producen durante las reacciones químicas, denominadas estas de combustión. En la mayoría de los fuegos, la reacción de combustión se basa en el oxigeno del aire, al reaccionar este con un material inflamable, tal como la madera, la ropa, el papel, el petróleo, o los solventes, los cuales entran en la clasificación química general de compuestos orgánicos; Por ejemplo los compuestos de carbono.
Una reacción de combustión muy simple es la que ocurre entre el gas metano, CH4, y el oxigeno, para dar bióxido de carbono, CO2 y agua.
Lo anterior es una reacción completa y muestra que una molécula (unidad) de metano, requiere de dos moléculas (unidades) de oxigeno para dar una combustión completa, si la reacción se realiza sin el oxigeno suficiente, se dice que es incompleta. La combustión incompleta de compuestos orgánicos producirá monóxido de carbono y partículas de carbono, las que con pequeños fragmentos de material no quemado, causan humo. La formación de bióxido de carbono en la atmósfera hará más difícil la respiración.
La mayoría de las personas que mueren en incendios, mueren a consecuencia del efecto toxico del humo y de los gases calientes, y no como consecuencia directa de las quemaduras.
La combustión de la gasolina en el motor de un automóvil constituye un buen ejemplo de una reacción de combustión incompleta, el monóxido de carbono, el bióxido de carbono, el agua y el humo, todos son emitidos por el tubo de escape, depositándose una buena cantidad de carbono u hollín. Para lograr que la mezcla de aire y gasolina se "enciendan" se debe contar con una bujía eficaz como fuente de ignición.
La combinación de combustible, oxigeno y calor, suministran los tres componentes de la reacción de combustión que puede dar origen al fuego.
1. 2. Triangulo del Fuego
Los tres elementos del fuego pueden representarse mediante el triángulo que se muestran a continuación.
Si el triangulo esta incompleto no podrá producirse "fuego". La base sobre lo que se apoya la prevención del fuego y la lucha contra el mismo consiste en romper el triangulo del fuego.
En general la reacción de combustión, reside en el oxigeno del aire para que este apoye la combustión, pero esta no es la única fuente de oxígeno, en su estructura para quemarse sin que el aire ayude, solamente requiere calor. Como ejemplos bien conocidos de tales materiales están, el celuloide, los explosivos denominados nitroglicerina y nitrocelulosa, la cordita y el nitrato de amoniaco. Los combustibles o materiales inflamables no reaccionan siempre con el oxigeno, para incendiarse; el cloro constituye un ejemplo de otro gas que puede contribuir a la combustión, a semejanza del oxigeno, puede reaccionar con el hidrógeno, y los compuestos orgánicos, por ejemplo la trementina.
Los accidentes con frecuencia los ocasiona lo inesperado, y el nitrógeno, como riesgo de incendio, puede sonar extraño, pero el caso es que puede arder con materiales reactivos y sus aleaciones, por ejemplo el magnesio.
La posibilidad de que un material se queme depende de sus propiedades física, a la vez que de sus propiedades químicas, por regla general los materiales son inflamables solamente en estado de vapor, son pocos los sólidos o los líquidos que arden directamente. La formación de vapor procedente de sólidos o líquidos se controlan fácilmente mediante su temperatura. En la prevención de fuegos, el conocimiento de la capacidad de un material para formar vapores y de la temperatura requerida para que dichos vapores se inflamen, es muy importante, sin calor o sin una fuente de ignición, el material inflamable puede utilizarse normalmente con plena seguridad en cuestión de su riesgo de incendio.
Una observación de la facilidad con que el vapor arde brinda también un sistema para reducir el peligro de fuego correspondiente a las distintas sustancias.
1.2.1 Combustible
Este puede ser cualquier material combustible, ya sea sólido, liquido o gas. La mayoría de los sólidos y líquidos se convierten en vapores o gases antes de entrar en combustión.
1. 2. 2. Oxigeno
El aire que respiramos esta compuesto de 21% de oxigeno. El fuego requiere una atmósfera de por lo menos 16% de oxigeno.El oxigeno es un carburante, es decir activa la combustión.
1. 2. 3. El Calor
Es la energía requerida para elevar la temperatura del combustible hasta el punto en que se despiden suficientes vapores que permiten que ocurra la ignición.
1. 2. 4. Reacción Química
Una reacción en cadena puede ocurrir cuando los otros tres elementos están presentes en las condiciones y proporciones apropiadas. El fuego ocurre cuando se lleva a cabo esta rápida oxidación o incendio.
Se le considera como incendio a todo tipo de fuego no controlado cause o no daños directos.
CAPITULO IIClasificación de los Fuegos
2. 1. Tipos de Fuegos
2. 1. 1 Clase "A"
Son los fuegos que involucran a los materiales orgánicos sólidos, en los que pueden formarse, brasas, por ejemplo, la madera, el papel, la goma, los plásticos y los tejidos.
2. 1. 2. Clase "B"
Son los fuegos que involucran a líquidos y sólidos fácilmente fundibles, por ejemplo, el etano, metano, la gasolina, parafina y la cera de parafina.
2. 1. 3. Clase "C"
Son los fuegos que involucran a los equipos eléctricos energizados, tales como los electrodomésticos, los interruptores, cajas de fusibles y las herramientas eléctricas.
2. 1. 4. Clase "D"
Involucran a ciertos metales combustibles, tales como el magnesio, el titanio, el potasio y el sodio. Estos metales arden a altas temperaturas y exhalan suficiente oxigeno como para mantener la combustión, pueden reaccionar violentamente con el agua u otros químicos, y deben ser manejados con cautela.
CAPITULO III Fuentes de Calor y como evitar que comience el Fuego
3. 1. El Calor
La energía necesaria para que el combustible vaporice y el fuego se inicie y mantenga se denomina "Calor".
El calor necesario para iniciar un Fuego, generalmente viene de una fuente externa que vaporiza el material combustible y sube la temperatura de los gases hasta su punto de inflamación. Después, el mismo calor que desprende el combustible que va ardiendo, vasta para vaporizar e inflamar mas combustible.
Existen diversas fuentes de calor y varían desde las muy evidentes hasta las insospechadas.
3. 2. Fuentes de Calor
3.2.1. Flamas Abiertas
Las flamas abiertas, como por ejemplo, los sopletes deben cuidarse de que no se encuentren cerca de productos flamables, como algún deposito de cualquier combustible.
Parecería que el peligro de los fuegos abiertos y chispas junto a materiales combustibles es tan evidente, que cualquier persona de criterio actuaría en consecuencia; pero la verdad, es que los casos de incendio demuestran lo contrario. Salvo en ciertas ocasiones verdaderamente imprevisibles, los incendios debido a estas situaciones son completamente abatibles. Los equipos para corte y soldadura que se utilizan sin la debida precaución, son causa grave, que por ellos se desprende una numerosa capa de chispas, por lo que en las áreas donde se emplean estos equipos no deberán manejar materiales de fácil combustión, se deberán usar pantallas de material incombustible a base de asbesto y deberá mantenerse una rigurosa limpieza en el área de trabajo, evitando derrames de aceites y otros productos de fácil combustión.
3. 2. 2. Cigarros, Cerillos y el Fumar
Para evitar que sean un peligro se deben definir perfectamente los lugares donde se pueda fumar, ya que los cigarros y cerillos, causan gran porcentaje de incendios.
Año tras año, una cuarta parte de incendios se originan por el descuidado modo de emplear los cerillos y la negligencia en apagar el cigarro o las cenizas de la pipa.
los pasos que debe dar el ingeniero o técnico en seguridad industrial, para que ya no exista ese problema son:
-Buscar cuales son los lugares más propensos a que exista fuego.
-Poner letreros que digan prohibido fumar, en cada lugar más propenso al fuego.
-Poner avisos donde se haya fijado, y se obligue a los trabajadores en general a aceptar las disposiciones, las cuales serán observadas al pie de la letra, tanto por supervisores y ejecutivos, como también por el gerente de la fabrica y visitantes.
-También que se lleven encima cerillos o encendedores de cigarro en las zonas ya consideradas de no fumar.
3. 2. 3. Instalaciones Eléctricas y Aparatos Eléctricos
Hay dos tipos de instalaciones eléctricas: provisionales y fijas
Instalaciones Eléctricas Provisionales:
Son aquellas que han envejecido y el material aislante que las cubre esta deteriorado, puede causar incendios por corto circuito o por subir la carga de energía eléctrica en las líneas de distribución, incendiando la estructura sobre la que están instalados los conductores, mas aun si la estructura es de madera o de algún material similar.
Instalaciones Fijas:
Son los conductores que deben de ir entubados y la calidad de los materiales deberán cumplir con la norma oficial correspondiente, principalmente en aquellos lugares donde se manejen líquidos y gases inflamables, en cuyo caso las tomas de corriente y registro deberán ser a prueba de explosión.
Los equipos eléctricos defectuosos son también causa frecuente de incendio por corto circuito en lo mismo y transmisión de fuego a materiales combustibles en su proximidad, tanto en equipos eléctricos como sus cables de alimentación deberán estar en perfectas condiciones.
3. 2. 4. Tipos de Chispas
Existen dos tipos de chispas diferentes: Eléctricas y Chispas Mecánicas
Chispas Eléctricas
Son las que se producen al desconectar un interruptor, al enchufar o al desconectar una clavija, al encender o apagar la luz, son peligrosos si se manejan materiales inflamables, ya que existe el riesgo de explosión. Para evitar esto las líneas, las conexiones y los interruptores deben ser herméticos para que las chispas que puedan producirse no entren en contacto.
Chispas Mecánicas
Son las que se producen por rozamiento. Un cojinete sin lubricación que se desliza puede producir un incendio por lo que deben corregirse estas anomalías, también pueden ser producidas por golpes, como con cinceles, excesivo rozamiento al rebajar algo con el esmeril.
Debe prevenirse que estas chispas caigan cerca de materiales combustibles, o que el ambiente donde se trabaje este cargado.
Los incendios pueden destruir fabricas completas y con ellas, fuentes de trabajo en perjuicio del trabajador y de la economía del país.
Para evitarlos se requiere que los trabajadores observen las normas de seguridad que los previenen en el caso de que exista el fuego.
Por eso se hace indispensable, capacitar al personal, para seleccionar y usar los equipos de combate de incendios.
Objetivo GeneralConocer cuales son los tres elementos que pueden provocar un incendio, y también conocer su comportamiento.
Objetivo EspecificoEste trabajo tiene como finalidad el cómo llevar a cabo la utilización del equipo para poder combatir cualquier tipo de incendio.
JustificaciónEste trabajo contiene información acerca de los elementos que pueden provocar un incendio, estos son: El calor, Combustibles, Oxigeno. Los cuales son una Reacción Química.
Esto quiere decir que, estos elementos están latentes en cualquier momento, si no se tiene la debida precaución pueden provocar un incendio, tanto en el hogar, como en el trabajo, pudiendo afectar tanto a las personas como a materiales y equipos de trabajo.También es importante señalar, que en este trabajo recepcional, encontraremos como eliminar estos tres elementos que son fuentes de calor.La realización de este trabajo es con el fin de presentar mi examen profesional y así poder obtener mi titulo profesional, el cual me facilitara entrar al área laboral.
CAPITULO I: Definición de elementos que participan para que exista fuego.
1. 1. Que es el fuego
El fuego según indica un viejo adagio, es un buen servidor pero un mal amo, la prudencia que contienen estas palabras demuestran demasiado, frecuentemente en los informes de los incendios que se traducen en perdidas de vidas o en daños a las propiedades. El fuego, el mal amo, es un riesgo constante en el trabajo, como en el hogar, y en nuestras actividades de ocio.
El fuego es consecuencia del calor y la luz que se producen durante las reacciones químicas, denominadas estas de combustión. En la mayoría de los fuegos, la reacción de combustión se basa en el oxigeno del aire, al reaccionar este con un material inflamable, tal como la madera, la ropa, el papel, el petróleo, o los solventes, los cuales entran en la clasificación química general de compuestos orgánicos; Por ejemplo los compuestos de carbono.
Una reacción de combustión muy simple es la que ocurre entre el gas metano, CH4, y el oxigeno, para dar bióxido de carbono, CO2 y agua.
Lo anterior es una reacción completa y muestra que una molécula (unidad) de metano, requiere de dos moléculas (unidades) de oxigeno para dar una combustión completa, si la reacción se realiza sin el oxigeno suficiente, se dice que es incompleta. La combustión incompleta de compuestos orgánicos producirá monóxido de carbono y partículas de carbono, las que con pequeños fragmentos de material no quemado, causan humo. La formación de bióxido de carbono en la atmósfera hará más difícil la respiración.
La mayoría de las personas que mueren en incendios, mueren a consecuencia del efecto toxico del humo y de los gases calientes, y no como consecuencia directa de las quemaduras.
La combustión de la gasolina en el motor de un automóvil constituye un buen ejemplo de una reacción de combustión incompleta, el monóxido de carbono, el bióxido de carbono, el agua y el humo, todos son emitidos por el tubo de escape, depositándose una buena cantidad de carbono u hollín. Para lograr que la mezcla de aire y gasolina se "enciendan" se debe contar con una bujía eficaz como fuente de ignición.
La combinación de combustible, oxigeno y calor, suministran los tres componentes de la reacción de combustión que puede dar origen al fuego.
1. 2. Triangulo del Fuego
Los tres elementos del fuego pueden representarse mediante el triángulo que se muestran a continuación.
Si el triangulo esta incompleto no podrá producirse "fuego". La base sobre lo que se apoya la prevención del fuego y la lucha contra el mismo consiste en romper el triangulo del fuego.
En general la reacción de combustión, reside en el oxigeno del aire para que este apoye la combustión, pero esta no es la única fuente de oxígeno, en su estructura para quemarse sin que el aire ayude, solamente requiere calor. Como ejemplos bien conocidos de tales materiales están, el celuloide, los explosivos denominados nitroglicerina y nitrocelulosa, la cordita y el nitrato de amoniaco. Los combustibles o materiales inflamables no reaccionan siempre con el oxigeno, para incendiarse; el cloro constituye un ejemplo de otro gas que puede contribuir a la combustión, a semejanza del oxigeno, puede reaccionar con el hidrógeno, y los compuestos orgánicos, por ejemplo la trementina.
Los accidentes con frecuencia los ocasiona lo inesperado, y el nitrógeno, como riesgo de incendio, puede sonar extraño, pero el caso es que puede arder con materiales reactivos y sus aleaciones, por ejemplo el magnesio.
La posibilidad de que un material se queme depende de sus propiedades física, a la vez que de sus propiedades químicas, por regla general los materiales son inflamables solamente en estado de vapor, son pocos los sólidos o los líquidos que arden directamente. La formación de vapor procedente de sólidos o líquidos se controlan fácilmente mediante su temperatura. En la prevención de fuegos, el conocimiento de la capacidad de un material para formar vapores y de la temperatura requerida para que dichos vapores se inflamen, es muy importante, sin calor o sin una fuente de ignición, el material inflamable puede utilizarse normalmente con plena seguridad en cuestión de su riesgo de incendio.
Una observación de la facilidad con que el vapor arde brinda también un sistema para reducir el peligro de fuego correspondiente a las distintas sustancias.
1.2.1 Combustible
Este puede ser cualquier material combustible, ya sea sólido, liquido o gas. La mayoría de los sólidos y líquidos se convierten en vapores o gases antes de entrar en combustión.
1. 2. 2. Oxigeno
El aire que respiramos esta compuesto de 21% de oxigeno. El fuego requiere una atmósfera de por lo menos 16% de oxigeno.El oxigeno es un carburante, es decir activa la combustión.
1. 2. 3. El Calor
Es la energía requerida para elevar la temperatura del combustible hasta el punto en que se despiden suficientes vapores que permiten que ocurra la ignición.
1. 2. 4. Reacción Química
Una reacción en cadena puede ocurrir cuando los otros tres elementos están presentes en las condiciones y proporciones apropiadas. El fuego ocurre cuando se lleva a cabo esta rápida oxidación o incendio.
Se le considera como incendio a todo tipo de fuego no controlado cause o no daños directos.
CAPITULO IIClasificación de los Fuegos
2. 1. Tipos de Fuegos
2. 1. 1 Clase "A"
Son los fuegos que involucran a los materiales orgánicos sólidos, en los que pueden formarse, brasas, por ejemplo, la madera, el papel, la goma, los plásticos y los tejidos.
2. 1. 2. Clase "B"
Son los fuegos que involucran a líquidos y sólidos fácilmente fundibles, por ejemplo, el etano, metano, la gasolina, parafina y la cera de parafina.
2. 1. 3. Clase "C"
Son los fuegos que involucran a los equipos eléctricos energizados, tales como los electrodomésticos, los interruptores, cajas de fusibles y las herramientas eléctricas.
2. 1. 4. Clase "D"
Involucran a ciertos metales combustibles, tales como el magnesio, el titanio, el potasio y el sodio. Estos metales arden a altas temperaturas y exhalan suficiente oxigeno como para mantener la combustión, pueden reaccionar violentamente con el agua u otros químicos, y deben ser manejados con cautela.
CAPITULO III Fuentes de Calor y como evitar que comience el Fuego
3. 1. El Calor
La energía necesaria para que el combustible vaporice y el fuego se inicie y mantenga se denomina "Calor".
El calor necesario para iniciar un Fuego, generalmente viene de una fuente externa que vaporiza el material combustible y sube la temperatura de los gases hasta su punto de inflamación. Después, el mismo calor que desprende el combustible que va ardiendo, vasta para vaporizar e inflamar mas combustible.
Existen diversas fuentes de calor y varían desde las muy evidentes hasta las insospechadas.
3. 2. Fuentes de Calor
3.2.1. Flamas Abiertas
Las flamas abiertas, como por ejemplo, los sopletes deben cuidarse de que no se encuentren cerca de productos flamables, como algún deposito de cualquier combustible.
Parecería que el peligro de los fuegos abiertos y chispas junto a materiales combustibles es tan evidente, que cualquier persona de criterio actuaría en consecuencia; pero la verdad, es que los casos de incendio demuestran lo contrario. Salvo en ciertas ocasiones verdaderamente imprevisibles, los incendios debido a estas situaciones son completamente abatibles. Los equipos para corte y soldadura que se utilizan sin la debida precaución, son causa grave, que por ellos se desprende una numerosa capa de chispas, por lo que en las áreas donde se emplean estos equipos no deberán manejar materiales de fácil combustión, se deberán usar pantallas de material incombustible a base de asbesto y deberá mantenerse una rigurosa limpieza en el área de trabajo, evitando derrames de aceites y otros productos de fácil combustión.
3. 2. 2. Cigarros, Cerillos y el Fumar
Para evitar que sean un peligro se deben definir perfectamente los lugares donde se pueda fumar, ya que los cigarros y cerillos, causan gran porcentaje de incendios.
Año tras año, una cuarta parte de incendios se originan por el descuidado modo de emplear los cerillos y la negligencia en apagar el cigarro o las cenizas de la pipa.
los pasos que debe dar el ingeniero o técnico en seguridad industrial, para que ya no exista ese problema son:
-Buscar cuales son los lugares más propensos a que exista fuego.
-Poner letreros que digan prohibido fumar, en cada lugar más propenso al fuego.
-Poner avisos donde se haya fijado, y se obligue a los trabajadores en general a aceptar las disposiciones, las cuales serán observadas al pie de la letra, tanto por supervisores y ejecutivos, como también por el gerente de la fabrica y visitantes.
-También que se lleven encima cerillos o encendedores de cigarro en las zonas ya consideradas de no fumar.
3. 2. 3. Instalaciones Eléctricas y Aparatos Eléctricos
Hay dos tipos de instalaciones eléctricas: provisionales y fijas
Instalaciones Eléctricas Provisionales:
Son aquellas que han envejecido y el material aislante que las cubre esta deteriorado, puede causar incendios por corto circuito o por subir la carga de energía eléctrica en las líneas de distribución, incendiando la estructura sobre la que están instalados los conductores, mas aun si la estructura es de madera o de algún material similar.
Instalaciones Fijas:
Son los conductores que deben de ir entubados y la calidad de los materiales deberán cumplir con la norma oficial correspondiente, principalmente en aquellos lugares donde se manejen líquidos y gases inflamables, en cuyo caso las tomas de corriente y registro deberán ser a prueba de explosión.
Los equipos eléctricos defectuosos son también causa frecuente de incendio por corto circuito en lo mismo y transmisión de fuego a materiales combustibles en su proximidad, tanto en equipos eléctricos como sus cables de alimentación deberán estar en perfectas condiciones.
3. 2. 4. Tipos de Chispas
Existen dos tipos de chispas diferentes: Eléctricas y Chispas Mecánicas
Chispas Eléctricas
Son las que se producen al desconectar un interruptor, al enchufar o al desconectar una clavija, al encender o apagar la luz, son peligrosos si se manejan materiales inflamables, ya que existe el riesgo de explosión. Para evitar esto las líneas, las conexiones y los interruptores deben ser herméticos para que las chispas que puedan producirse no entren en contacto.
Chispas Mecánicas
Son las que se producen por rozamiento. Un cojinete sin lubricación que se desliza puede producir un incendio por lo que deben corregirse estas anomalías, también pueden ser producidas por golpes, como con cinceles, excesivo rozamiento al rebajar algo con el esmeril.
Debe prevenirse que estas chispas caigan cerca de materiales combustibles, o que el ambiente donde se trabaje este cargado.
La Radiaciones
¿QUÉ ES LA RADIACIÓN?
Es el proceso de transmisión de ondas o partículas a través del espacio o de algún medio. Las ondas y las partículas tienen muchas características comunes, la radiación suele producirse predominantemente en una de las dos formas. La radiación mecánica corresponde a ondas que sólo se transmiten a través de la materia, como las ondas de sonido. La radiación electromagnética es independiente de la materia para su propagación, sin embargo, la velocidad, intensidad y dirección de su flujo de energía se ven influidos por la presencia de materia. La Radiación Electromagnética se divide en dos grandes tipos de acuerdo al tipo de cambios que provocan sobre los átomos en los que actúa:
Radiación no Ionizante
Radiación Ionizante
RADIACION NO IONIZANTE
Son aquellas que no son capaces de producir iones al interactuar con los átomos de un material. Se pueden clasificar en dos grandes grupos:
Los campos electromagnéticos
Las radiaciones ópticas
Dentro de los campos electromagnéticos se pueden distinguir aquellos generados por las líneas de corriente eléctrica o por campos eléctricos estáticos. Otros ejemplos son las ondas de radiofrecuencia, utilizadas por las emisoras de radio, y las microondas utilizadas en electrodomésticos y en el área de las telecomunicaciones.
Entre las radiaciones ópticas se pueden mencionar los rayos láser y la radiación solar como ser los rayos infrarrojos, la luz visibley la radiación ultravioleta. Estas radiaciones pueden provocar calor y ciertos efectos fotoquímicos al actuar sobre el cuerpo humano. Nosotros nos centraremos en la radiación ultravioleta que los últimos años por causa de diversos factores ha estado alcanzado la tierra en valores que perjudican seriamente nuestra salud y supervivencia.
Espectro Solar
Radiación Ultravioleta
La radiación solar posee una gran influencia en el medio ambiente debido a que es un factor que determina el clima terrestre. En particular la radiación ultravioleta es protagonista de muchos de los procesos de la biosfera. La radiación Ultravioleta es una Radiación electromagnética cuyas longitudes de onda van aproximadamente desde los 400 nm, el límite de la luz violeta, hasta los 15 nm, donde empiezan los rayos X. (Un nanómetro, o nm, es una millonésima de milímetro). Este tipo de radiación aunque en cierta forma es beneficiosa, si se excede los limites admisibles por la vida terrestre puede causar efectos nocivos en plantas y animales e incluido el hombre en lo que respecta a la piel y los ojos.Hay una serie de factores que afectan de manera directa la radiación ultravioleta que llega a la superficie terrestre, estos son:
Ozono atmosférico
Elevación solar
Altitud
Reflexión
Nubes y polvo
Dispersión atmosférica
El Índice UV es un parámetro UV para la población. Se trata de una unidad de medida de los niveles de radiación UV relativos a sus efectos sobre la piel humana (UV que induce eritema). Este indice puede variar entre 0 y 16 y tiene cinco rangos:
UVI
1
2
3
4
5
6
7
8
9
10
11 ó mayor
Bajo
Moderado
Alto
Muy alto
Extremado
Cuanto menor es la longitud de onda de la luz Ultravioleta, más daño puede causar a la vida, pero también es más fácilmente absorbida por la capa de ozono. De acuerdo a los efectos que la radiación Ultravioleta produce sobre los seres vivos se pueden diferenciar tres zonas en el espectro de la misma en base a su longitud de onda:
Ultravioleta C (UVC)Este tipo de radiación ultravioleta es la de menor longitud de onda, cubre toda la parte ultravioleta menor de 290 nm, es letal para todas las formas de vida de nuestro planeta y en presencia de la cual no sería posible la vida en la Tierra tal y como la conocemos actualmente, es totalmente absorbida por el ozono, de modo que en ningún caso alcanza la superficie terrestre.
Ultravioleta B (UVB)Entre las radiaciones UVA y UVC está la radiación UVB con una longitud de onda entre 280 y 320 nm, menos letal que la segunda, pero Peligrosa. Gran parte de esta radiación es absorbida por el ozono, pero una porción considerable alcanza la tierra en su superficie afectando a los seres vivos produciendo además del bronceado, quemaduras, envejecimiento de piel, conjuntivitis, etc. Cualquier daño a la capa de ozono aumentará la radiación UVB. Sin embargo, esta radiación está también limitada por el ozono troposférico, los aerosoles y las Nubes.
Ultravioleta A (UVA)La radiación UVA, con mayor longitud de onda que las anteriores entre 400 y 320 nm, es relativamente inofensiva y pasa casi en su totalidad a través de la capa de ozono. Este tipo de radiación alcanza los efectos de la radiación ultravioleta B pero mediante dosis unas 1000 veces superiores, característica que la convierte en la menos perjudicial. Hay realizar la aclaración de que la radiación Ultravioleta A alcanza la tierra con una intensidad muy superior a la UVB por lo tanto es recomendable Protegerse
I n i c i o
RADIACION IONIZANTE
Son radiaciones con energía necesaria para arrancar electrones de los átomos. Cuando un átomo queda con un exceso de carga eléctrica, ya sea positiva o negativa, se dice que se ha convertido en un ión (positivo o negativo). Entonces son radiaciones ionizantes los rayos X, las radiaciones alfa, beta y gamma. Las radiaciones ionizantes pueden provocar reacciones y cambios químicos con el material con el cual interaccionan. Por ejemplo, son capaces de romper los enlaces químicos de las moléculas o generar cambios genéticos en células reproductoras. Radiación alfa Las partículas alfa son conjuntos de dos protones y dos neutrones, es decir, el núcleo de un átomo de helio, eyectadas del núcleo de un átomo radiactivo. La emisión de este tipo de radiación ocurre en general en átomos de elementos muy pesados, como el uranio, el torio o el radio. El núcleo de estos átomos tiene bastantes más neutrones que protones y eso los hace inestables. Al emitir una partícula alfa, el átomo cambia la composición de su núcleo, y queda transformado en otro con dos protones y dos neutrones menos. Esto se conoce como transmutación de los elementos. Así por ejemplo, cuando el uranio 238 cuyo número atómico (Z = número de protones en el núcleo) es de 92, emite una partícula alfa, queda transmutado en un átomo de torio 234, cuyo número atómico es de 90
La característica de estas partículas a ser muy pesadas y tiene doble carga positiva les hace interactuar con casi cualquier otra partícula con que se encuentre incluyendo los átomos que constituyen el aire (cuando penetra en un centímetro de aire puede producir hasta 30.000 pares de iones), causando numerosas ionizaciones en una distancia corta.
Interacción de las Radiaciones Alfa con la Materia
Esta rapidez para repartir energía la convierte en una radiación poco penetrante que puede ser detenida por una simple hoja de papel sin embargo no son inofensivas ya que pueden actuar en los lugares en que se depositan ya sea por sedimentación o por inhalación.
Radiación beta Las partículas beta tienen una carga negativa y una masa muy pequeña, por ello reaccionan menos frecuentemente con la materia que las alfa pero su poder de penetración es mayor que en estas (casi 100 veces más penetrantes). Son frenadas por metros de aire, una lámina de aluminio o unos cm. de agua.Este tipo de radiación se origina en un proceso de reorganización nuclear en que el núcleo emite un electrón, junto con una partícula no usual, casi sin masa, denominada antineutrino que se lleva algo de la energía perdida por el núcleo. Como la radiactividad alfa, la beta tiene lugar en átomos ricos en neutrones, y suelen ser elementos producidos en reacciones nucleares naturales, y más a menudo, en las plantas de energía nuclear. Cuando un núcleo expulsa una partícula beta, un neutrón es transformado en un protón. El núcleo aumenta así en una unidad su número atómico, Z, y por tanto, se transmuta en el elemento siguiente de la Tabla Periódica de los Elementos.
Si una partícula beta se acerca a un núcleo atómico, desvía su trayectoria y pierde parte de su energía (se "frena"). La energía que ha perdido se transforma en rayos X. Este proceso recibe el nombre de "Radiación de Frenado".Otra interesante reacción ocurre cuando una partícula beta colisiona con un electrón positivo. En este proceso, ambas partículas se aniquilan y desaparecen, liberando energía en forma de rayos gamma.
Interacción de las Radiaciones Beta con la Materia
Radiación gammaLas emisiones alfa y beta suelen ir asociadas con la emisión gamma. Es decir las radiaciones gamma suelen tener su origen en el núcleo excitado generalmente, tras emitir una partícula alfa o beta, el núcleo tiene todavía un exceso de energía, que es eliminado como ondas electromagnéticas de elevada frecuencia. Los rayos gamma no poseen carga ni masa; por tanto, la emisión de rayos gamma por parte de un núcleo no conlleva cambios en su estructura, interaccionan con la materia colisionando con las capas electrónicas de los átomos con los que se cruzan provocando la pérdida de una determinada cantidad de energía radiante con lo cual pueden atravesar grandes distancias, Su energía es variable, pero en general pueden atravesar cientos de metros en el aire, y son detenidas solamente por capas grandes de hormigón, plomo o agua.
Con la emisión de estos rayos, el núcleo compensa el estado inestable que sigue a los procesos alfa y beta. La partícula alfa o beta primaria y su rayo gamma asociado se emiten casi simultáneamente. Sin embargo, se conocen algunos casos de emisión alfa o beta pura, es decir, procesos alfa o beta no acompañados de rayos gamma; también se conocen algunos isótopos que emiten rayos gamma de forma pura. Esta emisión gamma pura tiene lugar cuando un isótopo existe en dos formas diferentes, los llamados isómeros nucleares, con el mismo número atómico y número másico pero distintas energías. La emisión de rayos gamma acompaña a la transición del isómero de mayor energía a la forma de menor energía. Aunque no hay átomos radiactivos que sean emisores gamma puros, algunos son emisores muy importantes, como el Tecnecio 99, utilizado en Medicina Nuclear, y el Cesio 137, que se usa sobre todo para la calibración de los instrumentos de medición de radiactividad.
Efectos biologicos por la espocision a radio frecuencia y microonda
Denominamos radiación electromagnética de radiofrecuencia (RF) y microondas a la oscilación progresiva del campo eléctrico y magnético en un medio material o el vacío en la gama de frecuencias de 100 kHz a 300 GHz.
A los fines prácticos la radiación electromagnética de radiofrecuencia y microondas es clasificada en bandas de frecuencias que se corresponden a subregiones del espectro.
Región de Radiofrecuencia (RF):
Gama de ondas
Limite inferior(MHz)
Límite superior(MHz)
ondas largas
0.03
0.3
medias
0.3
3
cortas
3
30
ultracortas
30
300
Región de las microondas:
Gama de Ondas
Límite Inferior (GHz)
Límite Superior (GHz)
ondas decimétricas
0.3
3
centrimétricas
3
30
milimétricas
30
300
La absorción de radiación de RF o microondas en un medio material trae aparejado un efecto de calentamiento, de manera que la intensidad de la radiación podría medirse por el incremento de la temperatura. La intensidad de la radiación se denomina irradiancia y se expresa en W/m2. La densidad de potencia o irradiancia puede calcularse de los vectores campo eléctrico E y campo magnético H según un producto vectorial.
En términos generales la densidad de potencia es calculada en función del campo eléctrico. Entre los instrumentos destinados a la medición de este campo se cuenta el diodo rectificador, el bolómetro y el termopar.
Propiedades físicas.
La longitud de onda l es inversamente proporcional a la frecuencia f y directamente proporcional a la velocidad de propagación v de la onda en el medio material.
l=v / f ; [m]
La energía fotónica de la radiación crece en proporción lineal al aumento de la frecuencia, pero en esta gama las energías involucradas están entre 1,25 . 10-3 eV en los 300 GHz y 4,1 . 10-10 eV en los 100 kHz, valores alejados del límite de 12 eV necesarios para la ionización, de modo que a estas radiaciones se las puede calificar de no ionizantes.
Fondo.
Los campos RF y de microondas son producidos en la naturaleza aun sin la acción del hombre, pero la intensidad global de las radiaciones actuales, producto del desarrollo socio-industrial, es en varios órdenes de mayor magnitud que las naturales.
Los campos electromagnéticos naturales son más fuertes en frecuencias inferiores al límite de 100 kHz. El campo eléctrico estático de la tierra alcanza valores de 100 V/m en condiciones de buen tiempo en la capa de aire próxima al suelo. La presencia de nubes de tormenta incrementa la tensión del campo y las descargas eléctricas naturales producen una radiación de banda ancha centrada en los 10 kHz. En la gama de RF y microondas recibimos radiación del sol y las estrellas pero en magnitud de 10 pW/ cm2
La densidad de potencia de las fuentes naturales cae no linealmente con la frecuencia hasta valores inferiores a 10-22 uW/cm2.MHz sobre los 10 MHz, siendo la irradiancia más alta en la noche que durante el día.
Radiadores incidentales e intencionales.
La generación o utilización de la electricidad conduce a la producción de radiación electromagnética. En algunas ocasiones la radiación es intencional, en otras resulta un subproducto. La radiación no intencional generalmente aparece en forma de ruido de banda ancha o como armónicos discretos. Los tubos de luz fluorescente están destinados a producir radiación luminosa pero también generan no intencionadamente niveles de ruido blanco de microondas y RF.
Los emisores deliberados o intencionales tienen un elemento irradiante llamado antena.
El objetivo de uso del artificio determinará el diseño de la frecuencia, potencia, polarización, modulación, continuidad, dirección de propagación y vía de acceso al receptor. Se debe considerar no obstante la producción de radiación parásita que no se ajusta al objetivo de uso y suele estar presente en los emisores intencionales. Los emisores deliberados consisten en estaciones de radiodifusión y televisión, telecomunicación y radares.
Se genera radiación RF y de microondas de forma continua o en impulsos y la operación en el tiempo puede ser sostenida o intermitente. La onda puede ser modulada en amplitud, frecuencia e impulso. La información que porta la onda es trasladada por la modulación.
Bajo la práctica médica se emplean equipos destinados a irradiar pacientes con fines terapéuticos controlados.
Los radiadores incidentales se emplean a nivel doméstico, comercial e industrial. La exposición de la población en general debe ser considerada como intermitente y prolongada, de baja intensidad, en una gama muy amplia de frecuencias.
Calentadores dieléctricos de radiofrecuencia, operando entre 4 y 61 MHz con potencias de salida hasta 90 kW, producen exposiciones de los usuarios de más de 10 mW/cm2. Las poblaciones urbanas de países industrializados pueden sufrir exposiciones a RF y microondas de radiadores incidentales con intensidades del orden de hasta 100 uW/cm2. Los residentes en edificios altos de las cercanías de antenas exteriores de estaciones de radiodifusión y televisión pueden resultar expuestos a intensidades que fluctúan entre unos cientos de uW/cm2 hasta unos mW/cm2
Accidente quimico
*Accidentes quimicos
*Amenaza:Es la situacion capaz de dañar
*Vulnerabilidad:Es la catacteristica interna de la persona u objeto a ser dañado
*Riesgo:Es la provabilidad de que la amenaza dañe a la vulnerabilidad
*Prevencion:Es eliminar la amenaza o vulnerabilidad.
*Mitigacion:Es disminuir la amenaza por lo tanto se tiene menor riesgo.
*Amenaza:Es la situacion capaz de dañar
*Vulnerabilidad:Es la catacteristica interna de la persona u objeto a ser dañado
*Riesgo:Es la provabilidad de que la amenaza dañe a la vulnerabilidad
*Prevencion:Es eliminar la amenaza o vulnerabilidad.
*Mitigacion:Es disminuir la amenaza por lo tanto se tiene menor riesgo.
Suscribirse a:
Entradas (Atom)